The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

 Elizabeth Blackburn. Portrait.

Elizabeth Blackburn

Professor

 Elizabeth Blackburn. Portrait.

Orthogonal magnetic structures of Fe4O5 : representation analysis and DFT calculations

Author

  • Vyacheslav S. Zhandun
  • Natalia V. Kazak
  • Ilya Kupenko
  • Denis M. Vasiukov
  • Xiang Li
  • Elizabeth Blackburn
  • Sergei G. Ovchinnikov

Summary, in English

The magnetic and electronic structures of Fe4O5 have been investigated at ambient and high pressures via a combination of representation analysis, density functional theory (DFT+U) calculations, and Mössbauer spectroscopy. A few spin configurations corresponding to the different irreducible representations have been considered. The total-energy calculations reveal that the magnetic ground state of Fe4O5 corresponds to an orthogonal spin order. Depending on the magnetic propagation vector k, two spin-ordered phases with minimal energy differences are realized. The lowest energy magnetic phase is related to k = (0, 0, 0) and is characterized by ferromagnetic ordering of iron magnetic moments at prismatic sites along the b-axis and antiferromagnetic ordering of iron moments at octahedral sites along the c-axis. For the k = (1/2, 0, 0) phase, the moments in the prisms are antiferromagnetically ordered along the b-axis and the moments in the octahedra are still antiferromagnetically ordered along the c-axis. Under high pressure, Fe4O5 exhibits magnetic transitions with the corresponding electronic transitions of the metal-insulator type. At a critical pressure PC ∼ 60 GPa, the Fe ions at the octahedral sites undergo a high-spin to low-spin state crossover with a decrease in the unit-cell volume of ∼4%, while the Fe ions at the prismatic sites remain in the high-spin state up to 130 GPa. This site-dependent magnetic collapse is experimentally observed in the transformation of Mössbauer spectra measured at room temperature and high pressures.

Department/s

  • LU Profile Area: Light and Materials
  • LTH Profile Area: Photon Science and Technology
  • LTH Profile Area: Nanoscience and Semiconductor Technology
  • Synchrotron Radiation Research
  • NanoLund: Centre for Nanoscience

Publishing year

2023-12-19

Language

English

Pages

2242-2251

Publication/Series

Dalton Transactions

Volume

53

Issue

5

Document type

Journal article

Publisher

Royal Society of Chemistry

Topic

  • Condensed Matter Physics (including Material Physics, Nano Physics)

Status

Published

ISBN/ISSN/Other

  • ISSN: 1477-9226